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AbslracL Electron tunnelling in a transverse magnetic lield h studied raking into account 
the electron-phonon interaction. M e n  scattered on a phonon. the electron shifh the 
mcillator centre in the tunnelling direction, which decreases the field-related magnetic 
barrier and increases lhe probabilly of tunnelling considerably. For tunnelling wet 
large dislanca, the most effective processes involve multiple scattering by phonons An 
expression has been found lor the resistivity ai the Miller-Abraham nelwork element 
for hopping conductivity with regdd lo magnetic-barrier suppression upon scattering by 
phonons. The exponential temperature and vollage dependences of the tunnel junction 
conductance in a magnetic field pra l l r l  Io a dielectric interlayer have k e n  obtained. 
The mntribution associated with Ihe tunnelling pmesses involving scattering by WO 
phonons to the relaxation of edge4ate populations in the quantum Hall effect regime 
has been found. 

1. Introduction 

Investigation of many problems in solid state physics requires an understanding of 
the process of electron tunnelling in a magnetic field. Among such problems are: the 
study of the current flow in a tunnel junction placed in the magnetic field; hopping 
magnetoresistance of semiconductors; and tunnelling between the edge states in the 
quantum Hall effect regime. The present paper is concerned with the processes of 
single- or multiphonon-assisted electron tunnelling in the direction perpendicular to 
the magnetic field. It is shown that scattering by phonons facilitates tunnelling con- 
siderably and gives rise to an exponential temperature dependence of the tunnelling 
probability. 

The influence of the transverse magnetic field on the wavefunction of the impurity- 
bound electron's ground state manifests itself in the change of the  asymptotic be- 
haviour rk e x p ( - p / a )  to 
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where X = d m  is the magnetic length, and p = (z,y);  the electrons are 
assumed to be two-dimensional with the magnetic field H directed along the I 
axis. ?his fact may be interpreted as the result of the occurrence of an additional 
potential barrier, V, = h z p a / 5 m X 4 ,  called the magnetic barrier 111. In contrast to 
the conventional potential, V, is not k e d  in space, i.e. if the electron is scattered 
with a transfer of momentum hq, then the origin of the magnetic barrier is shifted 
within a distance Xzq in the direction [pH]. In the case of multiple scattering with 
momentum transfer perpendicular to the tunnelling direction, the magnetic bamer 
stops increasing monotonically with increasing p. This leads to the logarithm of the 
tunnelling probability depending linearly on distance d: 

A V M2aetsldi and K A Mawem 

In IY- - d / b  (2) 

where b is the charac!eristic length, which depends on '7i and the scattering intensity. 
This has been shown for the case of scattering by impurities (or the crystal boundary) 
[2-4]. In the present paper it is demonstrated that, at not too low temperatures, 
the magnetic barrier may be suppressed, even in the absence of impurities due to 
scattering by phonons. In contrast to scattering by static defects, the momentum 
uansfer to the phonon is inevitably accompanied by energy transfer. In particular 
this leads to the above-mentioned strong temperature dependence of the tunnelling 
probability. 

Section 2 considers single- and multiphonon-assisted electron hopping between 
two localized states. The probability of such an electron hop has been calculated as 
a function of intercentre distance d, level energy difference E, - El and temperature 
(for sufficiently strong magnetic fields, such that the magnetic length X is much less 
than d, throughout). If the difference in energy between the initial and final states is 
fairly great: 

Ei - E,  > hsd/X' (3) 

then acoustic multiphonon-assisted processes involving the shift of the oscillator cen- 
tret by the distance d are possible even at zero temperature (s is the sound velocity). 
Ihe probability of tunnelling with emission of an arbitrary number of phonons has 
the form 

Here a is the small dimensionless constant of the electron-phonon interaction. Equa- 
tion (4) takes into account the fact that in the n-phonon process the electron cov- 
ers distance d / ( n  + 1) between two sequential acts of phonon emission. Calcula- 
tion of summation (4) yields (2) with characteristic length b = A/(?  ln'/2(1/a)). 
The total momentum transferred to the emitted phonons cannot exceed the value 
Ap = ( E i  - E , ) / s  and, hence if condition (3) is not fultilled, then the total shift 
of the oscillator centre, Ax = X2Ap/h, appears to be smaller than d (here it is 
assumed that E, > Ef). Therefore, at T = 0 the tunnelling probability appears to be 

t Hereafter, instead of the lerm 'the ongin of the magnetic barrier', we adopr the more mmmonly used 
lerm 'the axillator cenrre'. 
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exponentially smaller than the value yielded by (4) by parameter ( d - A z ) 2 / A Z .  Fur- 
ther increase of temperature initiates the tunnelling processes accompanied by both 
emission and absorption of phonons. Such processes involve transfer of a larger mo- 
mentum to the phonon system and, hence, a larger total shift of the oscillator centre 
Azt. Thus, the tunnelling probability increases exponentially with temperature. 

The expression found in section 2 for the probability of hopping between two 
localized states involving an arbitrary number of phonons is used to calculate the 
resistivity of an element of the Miller-Abrahams network [I] for twodimensional 
hopping conductivity in a transverse magnetic field. Under certain conditions the 
effects related m the shift of the oscillator centre may show up in hopping magne- 
toresistance. 

In section 3 we investigate the passage of current in the tunnel junction in the 
presence of a magnetic field parallel to the plane of the dielectric interlayer. The 
contact leads are assumed to contain impurities; on the contrary, the interlayer is 
assumed to be free of impurities and its thickness d much larger than the magnetic 
length A. The dependence of differential conductance on temperature and on the 
wltage applied to the contact, G( V, T), has been found. At T = 0 and V = 0, the 
conductance is exponentially small, i.e. G 3( exp(-d2/2A2), and determined by the 
processes of elastic electron tunnelling. With increasing voltage on the contact (and 
at T = 0) the conductance increases exponentially, beginning with the characteristic 
value V - V, = hs/ed due to initiation of the tunnelling processes with phonon 
emission. At V > V’ = hsd/eA*,  the processes involving a shift of the oscillator 
centre, A z  = d ,  are allowed (see also (3)) and the conductance is saturated and has 
the value 

G 0: exp(-(2d/A) in1/’1/o). (9 
The increase in temperature at V = 0 also results in an exponential increase of 
conductance, but, in contrast to the case for T = 0 and V + 0,  this is due to 
the tunnelling processes involving both emission and absorption of phonons. The 
temperature dependence of conductance originates at threshold temperature Tz = 
h s / 2 d  and terminates at T - (hs/X)ln’/21/cu when the conductance reaches the 
value in (5). It is of interest to note that at voltages in the interval V’ < V < 1’. the 
conductance G( V,  T) exhibits a strong temperature dependence, even at T << eV. 

Section 4 considers the possibility of observing the multiphonon-assisted tunnelling 
effect in 2 0  ballistic structures in a magnetic field. In particular, the correction 
factor to the quantized Hall resistance value, which is exponentially dependent on 
temperature, should be observed due to the phonon-enhanced tunnelling between 
the edge states. 

2. The probability of a single hop between localized states 

The Hamiltonian of the 2D electron in a perpendicular magnetic field in the presence 
of two impurity centres takes the form 

f ie= (1/2m)(- ihV-(e/c)A)?+ w I ( p - p l )  f v , (p -p , )  (6) 

t P this end, it is certainly Wential that !he momenta of the absorbed and emitted phonons are opposite 
in direction. 
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where pj = (z, , y, ); the impurities are described by the small-radius potentials 
v l ( p )  and v z ( p ) ;  the impurity spacing Ipl - pzl = d>> A. Let us choose the vector 
potential in the Landau gauge: A ,  = XI, A,  = A ,  = 0. The wavefunctions of the 
states localized on impurities 1,Z may be written as 

A V Khaetskii and K A Mahreev 

where 'pj , Ej are the wavefunction and energy of the electron localized on impurity j 
in the absence of the other impurity ( j  = 1,2); it is assumed that hw,/2-Ej Q: hwc, 
where wc = lelH/mc is the cyclotron freqency. "he asymptotics of the wavefunction 
'p, has the form 

When writing the eigenfunctions of the Hamiltonian (6) in the form of (7) and (S), 
p, and p2 were assumed to be small. This condition is fulfilled at sulficiently large 
values of d since, as seen from (9), the values of Pj  are exponentially small: 

pj x e x p ( - d z / 4 X 2 ) .  (10) 

Given the electron-phonon interaction, there are transitions between states and 
!P2 with emission or absorption of phonons. If we assume that electrons interact 
only with acoustic phonons, and the electron-phonon interaction is described by the 
deformation potential, then: 

fie-ph = i A ~ ~ ~ ( e x p ( i g . ~ ) b ,  -exp(-iq.T)6:). (11) 
4 

Here T = ( p . ~ ) ,  A is the deformation potential constant, b, is the annihilation 
operator of the phonon with wavevector q, s is the velocity of the longitudinal sound, 
po is the material density and Vo is the sample volume. The probability of electron 
transition from state Ql to state q2 with absorption of m phonons and emission of 
1 phonons may be written as 

. . . ,  ( N ~ ~ + l ) I ~ l ~ ~ , ; N , ,  , . . . , N ~ ~ , N ~ ~  ,..., N,;)IZ 

x 6 ( E ,  - E?+ E& - E J .  (12) 

Here N ,  is the filling number of phonon state g, and Eabs and E,, are the total 
energies of absorbed and emitted phonons: 

m I 

E a b s = z h s 1 9 , 1  E,, = z h s l ' ? ; I  
t= 1 , = I  
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The summation in (12) is made over all the possible values of the wavevectors of 
absorbed phonons q l ,  . . . , qm and emitted phonons q ; ,  . . . , q;. Scattering operator 
T may be represented as a standard series of the perturbation theory with respect to 
the operator of the electron-phonon interaction (1 1): 

P 

The first term of series (13) corresponds to single-phonon-assisted tunnelling. Pro- 
cesses either with absorption or emission of a phonon are allowed depending on the 
relationship between El and E2. For instance, in the case of El > E2 we have 

i(91t91y)Q,(s,y)d3!dy 6(E1 - E2 - hsp')(15) 12 x cl/ ~ ; ( z .  u)e- 
q' 

where N (  E) is the equilibrium Planck phonon distribution function. Substitution Of 
functions (7) into (15) yields two types of integrals, namely, 

J ,  = d 2 p  1p; exp(-iq'p)(o, 

In contrast to the case 'H = 0 when J? > J ,  [I], calculations in the limit X < d 
yield J ,  > J2 .  As a result, for the probability of hopping we find from (15) 

J 2  = 0; /d'p p; exp( -iq'p)lpl. J 

Quantity zo represents the shift of the oscillator centre upon emission of a phonon 
with energy E,-E2. Equation (16) is valid a t  zo > X 2 / d ,  d - 2 1 ,  B A, therewith the 
momentum of the emitted phonon is directed almost perpendicular to the direction 
of tunnelling. Probability W,':;) increases exponentially with increasing El - E2 
owing to the increase in the shift of the oscillator centre zo on phonon emission. The 
probability of the reverse transition, LVi:?, is obtained from (16) by substitution of 
( N  + 1 )  for N .  

Let us show that under certain conditions multiphonon-assisted processes make 
an exponentially larger contribution to the tunnelling probability than single-phonon 
processes (see (16)). For instance, two-phonon contributions W,':?) and W,".;) 
determined by the second term of series (13) take the form 
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( 0  2) - 6 A ' ' x :  ~~ w122 - 
(E1 - 9 ) 2 4 ( 4 7 r ) 3 p ~ s 3 X s ~ ~ ( d  -$xo)- 

~ ~~ ~ ~ ~~ 

(17) 4x2 . 2x2 

. ~.~ 
~ . 

( 1  1) A4d3 1 
w1'2 E 162(2a)5/'pis3LTX9 ( E ,  - 9 ) 2  

(18) 

where L,  E hs/T.  Equation (17) is valid at X, B X Z / d ,  ( 2 / 3 ) d  - x, B A. 
Equation (18) is d i d  to an exponential accuracy at I, 2d - 31,; the pre- 
exponential in (18) depends in a complex way on xo, L ,  and d, the form presented 
above being valid within the limit xo ~5 L,  < d. 

L,  

Figure L Etfeclive mgnetic barrier Tor tunnelling with 
lhr emission of one dionon (solid line), In fra lnsition 
10 two-phonon processes Ihe bmer is changed m h e  
interval ( 0 ,  E O )  (dashed line). 4 x 0  xo d 

Equation (17) yields the tunnelling probability with the emission of two phonons. 
The exponential factors in (16) and (17) for probabilities of single- and two-phonon 
processes differ in the numerical coeliicient of the first component. This may be 
interpreted as follows. The exponent in (16) may be calculated as the quasiclassical 
probability of tunnelling through the barrier (figure 1). The barrier release at point 
xo is associated with emission of a phonon with momentum hxo/X2 in the direction 
perpendicular to the direction of tunnelling. For two-phonon emission the total shift 
of the oscillator centre also does not exceed xo since the total phonon energy is 
limited by E, - Ez. However, owing to the two-fold release of the magnetic barrier, 
(dashed line, figure I) ,  its effective height is reduced and the exponential multiplier 
in (17) appears to be larger than in (16) by a factor of exp(xi/4X'). 

For the processes of tunnelling with absorption of one phonon and emission of 
another phonon (the probability of which is described by (18)), the total shift of the 
oscillator centre is not limited by X2(  E ,  - E Z ) / h s  since the energy conselvation 
law now lixes the phonon energy difference rather than the phonon energy sum. The 
increase in the total shift of the oscillator centre (proportional to the total momentum 
transferred to the phonons) brings about a more effective suppression of the magnetic 
barrier and hence a significant incrcase in the tunnelling probability. Yet, at low 
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temperatures the probability of the absorption of a phonon with a large momentum 
is exponentially small, the competition between the two factors leading to probability 
(18). Note that processes involving both emission and absorption of phonons result in 
an exponential gain in the tunnelling probability compared to single-phonon processes 
even when (E, - E z )  -+ 0 (in contrast to processes with phonon emission only). For 
instance, at sufficiently high temperature (when L ,  < d ) ,  W,'!$) o( exp(-dz/6X2). 

The exponential increase in the tunnelling probability in transition from single- 
to double-phonon processes illustrates the general fact noted in the introduction that 
multiple scattering leads to a more effective suppression of the magnetic barrier. 
Therefore, it is useful to obtain an expression for the probability of tunnelling involv- 
ing an arbitrary number of phonons. The probability of a uansition with absorption 
of m phonons and emission of I phonons is obtained by substituting the (m + l)th 
term of series (13) into (12) and has the form 

where hQ is the total momentum transferred to phonons: 

j = 1  i = I  

and in (19) all the phonon energies are assumed to be greater than the temperature. 
The main contribution to the hopping probability is made by phonons with small qz, 
which is taken into account in (19). 

If the temperature is equal to zero, only processes with phonon emission are 
possible and in (19) it should be assumed that m = 0 and E,, = 0. The main 
contribution to the integral over q; is made by the processes for which q; = 41. .  . 
q; LI I , / X ~ I ,  the momenta of all the phonons directed approximately along vector 
H x (p l  - pz) ,  i.e. perpendicular to the tunnelling direction. Hence, the probability 
of tunnelling with the emission of an arbitrary number of phonons may be estimated 
as follows: 

The dimensionless constant 01 is proportional to the deformation potential A. Quan- 
tity cy2 may be estimated* as the pre-exponent ratio in (17) and (16): 

cy? = ~ ' / ' h A ' / 4 ( 4 r r ) ' p ~ s X ~ E '  

where it was assumed that d LI 2, LI A. s = 
5x105 cm s- l ,  X = 
lo-*. At small values of the energy level difference, when zo < X I n 3 / 2 ( l / ~ ) ,  the 

At A = 7 e v  po E 5g 
cm and for binding energy E = O.llLw, we get 01' LI 

t Our following results depend only on l n ( l / a ) .  Hence, the slricl definition of o (which canno1 be 
given in principle) is not necessary. 
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value of summation (20) is determined by one of its terms; in the opposite limit the 
summation may be substituted by the integral over 1, following which we find 

A V Khaerskii and K A Matveev 

W,, ,aexp{-2(1~/X) ln' /~( l /a)  - ( l / 2 X 2 ) ( d - ~ o ) 2 }  

for X ln3/2( l /a)  < xo  < d .  

At r0 > d the probability of tunnelling ceases to increase exponentially and 

W,-2 a e ~ p ( - ( 2 d / X ) l n ' ~ ~ ( l / a ) ) .  (22) 

At sufficiently high temperatures, such that (d - zo) - L , / 2  > X ln1/2(l/cv), 
the most effective processes involve both emission and absorption of a large number 
of phonons. In this case the tunnelling probability should be calculated by summing 
(19) over m and 1. The calculation is similar to that made above for m = 0 and 
yields 

As was noted in the introduction, multiphonon scattering causes suppression of the 
component in the exponential factor (23) which is quadratic in d / X .  When deriving 
(U), it was assumed that the energy of each absorbed phonon is large compared to 
the temperature. For this reason, (23) is valid at T a (iis/A)ln1/2(l/a). 

So far in this section we have considered the case when E, > E,. The formulae 
for the tunnelling probabilities when E? > E, may be obtained using the general 
relationship for the probabilities of dircct and reverse transitions. 

= kt'2-,exp((El - &)/T). (24) 

The expressions for the tunnelling probability given above may be used in studies 
of two-dimensional hopping conductivity in a transverse magnetic field. Here we 
restrict ourselves to calculation of the conductivity R;; of the element of the Miller- 
Abraham network (see, for example, section 4.2 of reference 111). Following the 
calculations made in [l] and using (24) we obtain 

R;: a I'li,,2exp(-(El - E 2 ) / 9 " -  ([E, -PI+ IE2 -~1) /2T) .  (2-5) 

Here p is the chemical potential and one of the expressions (E-lS), (21-23) should 
be substituted for tunnelling probability Id',-,. For instance,  for single-phonon pro- 
cesses, from (16) and (U) we find 

R;: o( exp(-(ri/2X2) - ( d -  z o ) 2 / 2 ~ 2 )  

x exp(-(IEl - E21 + IG -PI  + IE? - p I ) /?T ) .  (26) 

Note that, unlike the formula used previously [6], (26) takes into account the shift 
of the oscillator centre by zo =~~X21E, - E,l/ha upon emission (or absorption) of a 
single phonon. This is likely to be most pronounced in hopping magnetoresistance 
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in the region of intermediate magnetic fields ( a  K X K a where a is the Bohr 
impurity radius and R is the mean impurity spacing). 

Comparison between (16) and (18) shows that double-phonon processes make a 
greater contribution to the tunnelling probability than single-phonon o n e  at suffi- 
ciently high temperature 

L ,  < 3d - 31, - In’/’(l/a). (27) 

Hence, to observe multiphonon effects, it is essential that parameter d /X  should 
be fairly great (e.g. d/X > 6 In’/’(l/a)), which is hardly realized in the known 
experiments on hopping magnetoresistance. The appropriate condition, however, may 
be realized in a specially prepared tunnel junction. 

3. lhnnel junction in a transverse magnetic field 

Let us consider the tunnel junction of two metallic conductors separated by a dielectric 
interlayer. We will calculate the current passing in such a junction as a function of 
temperature T and applied voltage 1’ in the prcsence of a magnetic field H parallel 
to the interlayer plane. Assume that the interlayer thickness d is large and its 
related energy barrier U, is low so that the condition mw:d? > Cl,! is fulfilled; this 
means that the exponential suppression of the tunnelling current is mainly caused 
by electrons overcoming the magnetic barricr ( d  > A). In [3] it was shown that 
the presence of impurities in the interlayer facilitates tunnelling considerably due to 
the release of the magnetic barrier on subbarrier scattering. As distinct from 131, 
we assume here that the interlayer k free of impurities but that the leads contain 
a random potential. Below it will be shown that  the tunnelling current is mainly 
related to the processes involving absorption and emission of phonons. Yet, first let 
us consider the elastic tunnelling (phonon-free) processes that are important at fairly 
low temperatures and voltages. 

3.1. Dependence of elastic conductance on interlayer ihickness 

Let us describe the tunnel junction by means of the model Hamiltonian 

% = %, + Gimp (W 
%, = (1/2nz)(- ihV-(e/c)A)’+ U,,O(r)O(d-t) (29) 

??imp = V , ( V ) ~ ( - Z )  t V?(r)0(1 - d )  (30) r = ( p , z )  

where O(z) is the Heaviside function and the random potentials in the leads, 
are assumed to be delta-correlated: 

(Vl ( r )q(Q = yI6(r  - r ’ )  ( V 2 ( ~ ) V ? ( p ‘ ) )  = 7 4 r -  r ’ ) .  (31) 

t l l i s  condition can hardly be fulfilled in conventional MIM tunnel junctions. However, we suppose that 
rhe desired junclion may be realized in a silicon MOSFFT where the height of the barrier is adjusted bj 
the gale vollage. Another possibility is lo make a barrier of pure GaAs and the leads of heavily doped 
(degenerate) GaAs. 



3500 

When choosing the vector potential in the Landau gauge, A = ( O , H x , O ) ,  the 
eigenstates of Hamiltonian '??, may be classified in accordance with wordinate X = 
XZk, of the magnetic oscillator centre. Let us relate the states corresponding to 
X < d / 2  to the left lead and the states with X > d / 2  to the right lead. Assume 
that the Fermi energy is smaller than the barrier height so that only states with X < 0 
and X > d, are filled. Since the coordinate of the oscillator centre is the integral 
of motion, then in the absence of perturbation fiimp the current is equal to zero. 
In order to determine the dependence of conductance on interlayer thickness in the 
presence of an impurity potential in the leads, we calculate the mean square of the 
amplitudes of transitions from state SL in the left lead to state XR in the right lead 
in the first two orders of the perturbation theory in '??imp: 

A V Khaerrkii and K A Mahteev 

( l T L R 1 * )  = /d3r  I+L(r)121~R(r)I*{Y1e(-x)  f YZe("- d ) }  

+ ~ ~ ~ ~ / d ~ r  d3r' IGL(r)l'e(-r)lY(r,r')I'B(x'- d)l!bR(r')I2. (32) 

Here & and GR are the wavefunctions of states with oscillator centres X, and X,; 
g ( r , r ' )  is the Green function of the SchrMinger equation with Hamiltonian fi, (29); 
and the angular brackets denote averaging Over the impurity potential. Considering 
in (32) the asymptotic behaviour 

(33) 

(34) 

(35) 

2 
I+L.RI* x e x p ( - ( z  - .YL, fJ  / A * )  

Ig(r,r')Iz % e x p ( - I P -  P I / - A  ) 

G,, = t ( r t  + + C Y ~ Y ?  

r z  9 2 

for elastic conductance we obtain 
e-d=/?A' 

Dimension coefficients < and E' take into amount the densities of the states in the 
leads and are independent of interlayer thickness d. As seen from (35), two types of 
the exponential dependence of elastic conductance on d are possible. If the impurity 
potential is weak (y , ,y2  - 0), then the conductance is determined by the first term 
in (35) corresponding to such scattering processes when, for instance, an electron is 
scattered from the left lead to the right one on the right-lead impurity (see the first 
component in (32)). In this case the thickness dependence, G,, x e x p ( - d 2 / X 2 ) ,  is 
dctermined by the asymptotic behaviour of the wavefunctions (33). If the impurity 
potential is not too weak, the thickness dependence of conductance is determined 
by the second term in (35) which corresponds to scattering processes on a pair of 
impurities located in the opposite leads of the junction. In this case dependence 
G,, c( e x p ( - d 2 / 2 X ' )  is determined by the square of the modulus of the Green 
function (34) calculated between two neighbouring points in the opposite leadst. It is 
clear that at sufficiently high values of d / X  the thickness dependence of conductance 
(35) is determined by the second term. 

Formulae (32), (35) take into account only the first two orders of the expansion of 
the tunnelling amplitude in terms of the impurity potential. If  the latter is not small, 
account should also be taken of higher orders which, as can be seen, do not change 
the exponential dependence of conductance on thickncss, G, D: e x p ( - d z / 2 X 2 ) .  

t A similar relationship krween conductance and the Green function was discussed in 131 tor the case 
01 scattering by impurities in the iorcrlayer. 
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3.2. Conductance and the current-voltage characferislic in view of subbarrier scattering 
by phonons 
In this section we calculate the differential conductance of the tunnel junction in 
a magnetic field parallel to the interlayer as a function of two variables, namely 
temperature and applied voltage. We will start with the standard expression 

I = e C [ W k , n k ( l  - n,) - wpliql - "dl (36) 
k p  

relating the current in the tunnel junction to the probabilities of transitions Wkp and 
Wpk between electron states k and p of the left and right leads of the junction, 
respectively. The dependence of the current on the voltage applied to the junction 
is taken into account in (36) in the Fermi filling numbers n k  = nF( Ek - e V ) ,  np = 

The processes of magnetic barrier release occurring due to scattering by phonons 
are considered in transition probabilities Wkp.  As in section 3.1, transition amplitude 
Tkp may be calculated in the second order of the perturbation theory in the impurity 
potential in the leads, but in an arbitrary order with respect to the electron-phonon 
interaction. Then for the impurity-averaged squarc of the transition amplitude with 
absorption of phonons q l , .  . . , q,,, and emission of phonons q ; ,  . . . , q[ we obtain an 
expression coincidingwith the second term in (32) where the Green function g ( r , T ' )  
is replaced by the matrix element of the operator Green function: 

( r ' ; ( N q l - l )  ...( N q , - l ) , ( N , ;  + l ) . . . ( N , ~ + l ) l l / ( ~ k - f i )  

nF(Ep). 

x I T ;  N,, . . . N , , ,  N,: . . . N , ; ) .  (37) 

Here fi = fi, + fi,, + fie-ph (29), (I]), (14). Expanding (37) in a power series of 
fi,,,, it can be verified easily that (37) coincides (within the accuracy of insignificant 
pre-exponential factors) with the matrix element of the T-opcrator (12) for the tran- 
sition between states localized on impurity centres situated at points T and T'. Hence, 
calculating the current using (36). we will use for CV,, the expressions obtained in 
section 2 for the probability W1-* of transition between localized states. In doing 
so, energies E, and E, should be substituted by Ek and E, and d should mean 
interlayer thickness rather than centre spacing. 

3.2.1. Non-linear differenfial conducrance a1 T = 0. Let us calculate the conductance, 
G( V), of the tunnel junction at zero temperature when, besides elastic tunnelling, 
only phonon emission processes are possible. Differentiating (36) at T = 0 with 
respect to V, we obtain 

G ( V ) = e Z ~ l V k p ( l  - n 3 , ) 6 ( E k - e V ) .  (38) 
b 

As shown in section 2, the hoppiing probability increases exponentially with an in- 
crease in the energy difference between the initial and final states due to a greater 
shift q, of the oscillator centre upon phonon emission. Since the maximum value of 
energy difference E,  - E, in (38) is e V ,  the estimation 
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is valid for the inelastic contribution to conductance within an exponential accuracy 
(20). The total conductance, G( V), is the sum of inelastic and elastic contributions; 
the latter, as shown in section 3.1, taking the form G,, D( exp(-d2/2X2) and being 
free of an exponential voltage dependence. At voltages lev1 > Z ( h s / d ) l n ( l / a )  the 
inelastic contribution exceeds the elastic one and conductance starts to increase expo- 
nentially with voltage. As the voltage increases, the processes with emission of 1,2,3, ... 
phonons are sequentially initiated. At voltages greater than ( h ~ / l e ( X ) l n ~ / ~ ( I / a )  de- 
pendence (39) has an asymptotic form 

G , ( V )  o( exp{-2X(leVl/hs) In"'(l/a) - (1/2X2)(d- X21eVl/hs)2}. (40) 

The exponential increase of conductance continues up to voltage leV'I = h s d / X 2  a t  
which the processes with oscillator centre shift L,, = d are allowed and estimation 
(5) is valid for conductance. 

3.22. Teniperaiure dependence oJlinenr condticrance. Let us calculate the temperature 
dependence of conductance G(T)  in the linear regime, eV T IS]. Differentiating 
current (36) with respect to V in this limit, we find 

A V fiaeiskii and K A Marveev 

Expanding hopping probability W,, in a power series of the electron-phonon inter- 
action constant, linear conductance may be presented as 

G( T )  = G,, + G("( T) + G("( T )  + . . . (42) 

where G('),G@),. . . are the contributions to conductance caused by the processes 
involving 1,2, ... phonons. At a small electron-phonon interaction constant a (and not 
too large interlayer thickness d) the temperature dependence of linear conductance 
is determined by several corrections in (42). Using (16) for the hopping probability 
with the emission of one phonon and relationship (24) from (41) we obtain 

From (43) it is seen that at T < h s / d  no effects of magnetic barrier release are 
exhibited. This is due to the fact that the tunnelling processes involving phonons with 
large momenta are suppressed at low temperatures. 

Substituting (17) and (18) into (41). we find the second correction: 

Note that the exponential increase of correction G(') starts at threshold temperature 

Tz = h s / 2 d  (45) 
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when correction G(’ )  is still independent of temperature. Therefore, both corrections 
(43) and (44) should be considered when investigating the temperature dependence 
of linear conductance at small a. 

If constant a is not too small, inelastic processes involving 3,4,5, ... phonons 
are initiated with increasing temperature. At sufficiently high temperature, when 
T-T,  > T, (X/d)  ln3/*(I/a), conductance is determined by multiphonon processes 
and its temperature dependence found by meaG of (U), (41) takes the form 

G(T) a e x p [ - ( d / X ) ( ( & / 2 X )  + 21n’/2(1/a)) + ( L $ / S X ’ )  

+ ( L , / x )  ~ n ’ / ’ ( ~ / a ) ] .  (46) 

At T .., (hs/X) lnl/’(l/a), the G(T) dependence is saturated at value (5). 

3.2.3. Non-hear conductance at fnife  rempcrorures. In sections 3.2.1 and 3.2.2 con- 
ductance was studied at T= 0 and T B l e v [ .  It is of interest, however, that at 
not very high voltages ( V  < hsd/lelX?) a pronounced temperature dependence also 
exists within the temperature range h s / d  < 7 leLrl. Using (16) and (36) for a 
single-phonon contribution to conductance at (T and 1’ different from zero), we find 

(47) 

It a n  be readily seen that at T = 0 equation (47) coincides with the first term 
of series (39) and at V = 0 it coincides with (43). The exponential temperature 
dependence within the range T g lev1 is conditioned by the fact that at T > 0 
tunnelling processes involving emission of a phonon with energy exceeding lev1 are 
allowed; this brings about a shift of the oscillator centre greater than that at T = 0. 

For multiphonon contributions to conductance, the temperature dependence at 
T << /eVI is largely due to the possibility of incrcasing the total shift of the oscillator 
centre at the expense of the combined processes involving both emission and ab- 
sorption of phonons. For instance, for the contribution of combined double-phonon 
processes to conductance, from (18) and (36) we obtain 

d’)(T, V )  cx 

At V = Oequation (48) coincides with (44). At low temperatures, T < h s / d ,  besides 
(48), account should also be taken of the contribution made by the processes involving 
the emission of [WO phonons (describcd by the second term of series (39)). Note 
that the temperature-dependent douhle-phonon contribution (48) starts increasing 
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abruptly at lower temperatures than the single-phonon contribution (47). Hence, 
generally speaking, both contributions should be taken into account even at small a. 

For the case where the electron-phonon interaction constant is not too small, 
combined processes involving emission and absorption of a large number of phonons 
become important with increasing temperature. Their contribution to conductance 
may be found by means of (23) and (36) and has the form 

G(V,T)  aexp(-(d/X)((L,/ZX) + 2  lnl/’(l/a)) + (L$/SX’) 

A V Mtaetskii and K A Matveev 

+ ( L ~ / x )  lnl’*(l/ci)} e x p ( l e l ’ l / 2 T ) .  (49) 

Formula (49) is valid at d - leVlX*/tis - L,/2 B X h ~ ~ / ~ ( l / a ) , T  < 
( f i ~ / X ) l n ’ / ~ ( l / a ) .  At T - (hs/X)ln’/2(l/a) conductance is saturated at value 
(5) irrespective of applied voltage. Combined processes are insignificant in the re- 
gion of the values of V and T such that d - lel’ lX?/hs - L,/2 < 0. In this case 
conductance is determined by the tunnelling processes involving emission of phonons 
and is described by (41). 

4. Phonon-assisted transitions between the edge states in  2D ballistic structure 

Buttiker’s approach [7], based on the consideration of edge states, has been widely 
used to describe the experiments on the integer quantum Hall effect. In [8,9] it 
has been shown that electron transitions between different edge states may lead to 
deviation of the Hall resistance from the quantized value. Two situations are possible: 
(i) transitions occur between two different edge states located near to one sample 
boundary and (ii) transitions between the edge states located near opposite sample 
boundaries. Numerous experiments on measuring the length of time to establish 
equilibrium between initially non-equilibrium populatcd edge stares correspond to 
the first case [lO,ll]. If the confining potential is fairly smooth, then the distance 
d between two neighbouring edge states may appear to be much larger than the 
magnetic length (for instance, estimation d / X  5.2 was obtained in [IO]). In the 
second case, when transitions between states located at different edges of the sample 
are considered, d is determined by the sample width and, hence, i t  is also large 
compared to A. It would be expected that for d > X in a sulficicntly pure sample 
transitions between cdge states arc accomplished mainly due to the processes involving 
a single or several phonons. 

In this section we calculate to an exponential accuracy the current passing between 
two edge states as a function of temperature T and the difference of their electro- 
chemical potentials Ap (the current being due to the scattering processes involving 
one or two phonons). It is assumcd that impurities are absent so that the wavevector 
along the boundaq is conscrved.t 

The contribution to current caused by single-phonon processes is determined by 
the expression 

(50) 
I ,  = J ,  e x p ( - d 2 / 2 ~ ? )  e x p (  -(- t lsd - l ~ p l ) / ~ } .  

A ?  

t In the case of rough boundaries, the problem on snllering between edge statcs located near opposile 
sample boundaries is reduced to L e  problem milsidered in Seclion 3. 
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At A p  * 0 this expression was obtained in [12,13], where pre-exponential factor 
J, (proportional to the square of the electron-phonon interaction constant) was 
also calculated. In (50) it is assumed that d >> X,lApl < h s d / X 2  and T &: 
h s d / X 2 .  The occurrence of the exponential temperature dependence in (50) is related 
to the fact that owing to the conservation of the wavevector along the boundary 
upon scattering, the main contribution to current is made by the processes involving 
emission of phonons with energy h s d / X 2 .  The last multiplier in (50) describes the 
small probability of finding the unoccupied final state whose energy is below the 
corresponding electrochemical potential by ( h s d / X 2  - IApl ) .  At lAp1 > h s d / X z  
equation (50) is free of the last multiplier and spontaneous phonon emission is 
possible at any temperature [IO]. 

?ivo contributions to current related to double-phonon processes may be dis- 
cerned. The first is due to scattering between edge states involving emission of two 
phonons and takes the form 

I ,  = ~ ? e x p ( - d ? / 4 ~ ? ) e x p  { - ("XS:' - - I A ~ ~ ) / T } .  (51) 

This expression is quite analogous to (50) but distinguished from it by pre-exponential 
factor J,, which is proportional to the fourth power of the electron-phonon inter- 
action constant, and a less pronounced dcpendcncc on d associated with a more 
effective suppression of the magnetic barrier. The second contribution is related to 
the combined processes when one phonon is absorbed and the other is emitted, and 
takes the form 

I ;  = .I; e x p ( - d ? / 4 X 2 )  e x p ( - h s d / 2 X 2 T )  F( A p ,  T )  (52) 

Comparison of (50) and (52) in the simplest case ( I A p  - 0)  shows that the corre- 
sponding exponential temperature dependences are significantly different: the activa- 
tion energy corresponding to the double-phonon processes is half as large. This is due 
to the fact that the main contribution to current is made by the combined processes 
in which the wavevectors of both the emitted and the absorbed phonons are equal in 
magnitude to d / 2 X 2  so that the temperature dependence of the contribution to the 
current (52) at lAp1 i 0 is governed only by the small probability of absorption of 
a phonon with energy hsd/?-X?. Therefore, measurement of the activation energy in 
the temperature dependence of the inverse length of edge state population relaxation 
at IApl << T may be recommended for experimcntal obsemtion of double-phonon 
processes. The estimations show, in the case of GaAs (and also when considering 
pre-exponent factors for the deformation potential interaction), that one- and two- 
phonon contributions to the scattering rate between edge states related to the zeroth 
and first Landau levels for 7-f = 3.7 T become equal at T ss 0.s1.6 K for d / X  = 
4-5. 
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